Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(1): 879-890, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175110

RESUMO

Conventional optical microscopes generally provide blurry and indistinguishable images for subwavelength nanostructures. However, a wealth of intensity and phase information is hidden in the corresponding diffraction-limited optical patterns and can be used for the recognition of structural features, such as size, shape, and spatial arrangement. Here, we apply a deep-learning framework to improve the spatial resolution of optical imaging for metal nanostructures with regular shapes yet varied arrangement. A convolutional neural network (CNN) is constructed and pre-trained by the optical images of randomly distributed gold nanoparticles as input and the corresponding scanning-electron microscopy images as ground truth. The CNN is then learned to recover reversely the non-diffracted super-resolution images of both regularly arranged nanoparticle dimers and randomly clustered nanoparticle multimers from their blurry optical images. The profiles and orientations of these structures can also be reconstructed accurately. Moreover, the same network is extended to deblur the optical images of randomly cross-linked silver nanowires. Most sections of these intricate nanowire nets are recovered well with a slight discrepancy near their intersections. This deep-learning augmented framework opens new opportunities for computational super-resolution optical microscopy with many potential applications in the fields of bioimaging and nanoscale fabrication and characterization. It could also be applied to significantly enhance the resolving capability of low-magnification scanning-electron microscopy.

2.
Nat Chem ; 15(7): 930-939, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37353602

RESUMO

Conventional light-driven cancer therapeutics require oxygen and visible light to indirectly damage biomolecules, limiting their efficacy in deep, hypoxic tumours. Here we report the use of near-infrared-activated small-molecule Pt(IV) photooxidants to directly oxidize intracellular biomolecules in an oxygen-independent manner, achieving controllable and effective elimination of cancer stem cells. These Pt(IV) complexes accumulate in the endoplasmic reticulum and show low toxicity in the dark. Upon irradiation, the resultant metal-enhanced photooxidation effect causes them to robustly photooxidize survival-related biomolecules, induce intense oxidative stress, disrupt intracellular pH (pHi) homeostasis and initiate nonclassical necrosis. In vivo experiments confirm that the lead photooxidant can effectively inhibit tumour growth, suppress metastasis and activate the immune system. Our study validates the concept of metal-enhanced photooxidation and the subsequent chemotherapeutic applications, supporting the development of such localized photooxidants to directly damage intracellular biomolecules and decrease pHi as a strategy for effective metal-based drugs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Platina/química , Platina/uso terapêutico , Antineoplásicos/química , Oxigênio , Neoplasias/tratamento farmacológico , Luz , Linhagem Celular Tumoral
3.
Nano Lett ; 23(12): 5851-5858, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37067172

RESUMO

The ultrasmall mode volume and ultralarge local field enhancement of compact plasmonic nanocavities have been widely explored to amplify a variety of optical phenomena at the nanoscale. Other than passively generating near-field enhancements, dynamic tuning of their intensity and associated nonlinear optical processes such as second-harmonic generation (SHG) play vital roles in the field of active nanophotonics. Here we apply a host-guest molecular complex to construct a photoswitchable molecule-sandwiched metallic particle-on-film nanocavity (MPoFN) and demonstrate both light-controlled linear and nonlinear optical tuning. Under alternating illumination of ultraviolet (UV) and visible light, the photoactive plasmonic molecular nanocavity shows reversible switching of both surface-enhanced Raman scattering (SERS) and plasmon resonance. Surprisingly, we observe more significant modulation of SHG from this photoactive MPoFN, which can be explained qualitatively by the quantum conductivity theory (QCT). Our study could pave the way for developing miniaturized integrated optical circuits for ultrafast all-optical information processing and communication.

4.
Small ; 19(26): e2301476, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36949015

RESUMO

The introduction of structural complexity to nanoparticles brings them interesting properties. Regularity breaking has been challenging in the chemical synthesis of nanoparticles. Most reported chemical methods for synthesizing irregular nanoparticles are complicated and laborious, largely hindering the exploration of structural irregularity in nanoscience. In this study, the authors have combined seed-mediated growth and Pt(IV)-induced etching to synthesize two types of unprecedented Au nanoparticles, bitten nanospheres and nanodecahedrons, with size control. Each nanoparticle has an irregular cavity on it. They exhibit distinct single-particle chiroptical responses. Perfect Au nanospheres and nanorods without any cavity do not show optical chirality, which demonstrates that the geometrical structure of the bitten opening plays a decisive role in the generation of chiroptical responses.

5.
Nat Commun ; 12(1): 6849, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824226

RESUMO

Currently, owing to the single-molecule-level sensitivity and highly informative spectroscopic characteristics, surface-enhanced Raman scattering (SERS) is regarded as the most direct and effective detection technique. However, SERS still faces several challenges in its practical applications, such as the complex matrix interferences, and low sensitivity to the molecules of intrinsic small cross-sections or weak affinity to the surface of metals. Here, we show an enrichment-typed sensing strategy with both excellent selectivity and ultrahigh detection sensitivity based on a powerful porous composite material, called mesoporous nanosponge. The nanosponge consists of porous ß-cyclodextrin polymers immobilized with magnetic NPs, demonstrating remarkable capability of effective and fast removal of organic micropollutants, e.g., ~90% removal efficiency within ~1 min, and an enrichment factor up to ~103. By means of this current enrichment strategy, the limit of detection for typical organic pollutants can be significantly improved by 2~3 orders of magnitude. Consequently, the current enrichment strategy is proved to be applicable in a variety of fields for portable and fast detection, such as Raman and fluorescent sensing.

6.
Angew Chem Int Ed Engl ; 60(37): 20437-20442, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34227199

RESUMO

Delicately designed dopant-free hole-transporting materials (HTMs) with ordered structure have become one of the major strategies to achieve high-performance perovskite solar cells (PSCs). In this work, we report two donor-π linker-donor (D-π-D) HTMs, N01 and N02, which consist of facilely synthesized 4,8-di(n-hexyloxy)-benzo[1,2-b:4,5-b']dithiophene as a π linker, with 10-bromohexyl-10H-phenoxazine and 10-hexyl-10H-phenoxazine as donors, respectively. The N01 molecules form a two-dimensional conjugated network governed by C-H⋅⋅⋅O and C-H⋅⋅⋅Br interaction between phenoxazine donors, and synchronously construct a three-dimension lamellar structure with the aid of interlaminar π-π interaction. Consequently, N01 as a dopant-free small-molecule HTM exhibits a higher intrinsic hole mobility and more favorable interfacial properties for hole transport, hole extraction and perovskite growth, enabling an inverted PSC to achieve a very impressive power conversion efficiency of 21.85 %.

7.
Angew Chem Int Ed Engl ; 60(13): 7227-7233, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33369830

RESUMO

Currently, the performance improvement for inverted perovskite solar cells (PVSCs) is mainly limited by the high open circuit voltage (VOC ) loss caused by detrimental non-radiative recombination (NRR) processes. Herein, we report a simple and efficient way to simultaneously reduce the NRR processes inside perovskites and at the interface by rationally designing a new pyridine-based polymer hole-transporting material (HTM), PPY2, which exhibits suitable energy levels with perovskites, high hole mobility, effective passivation of the uncoordinated Pb2+ and iodide defects, as well as the capability of promoting the formation of high-quality polycrystalline perovskite films. In absence of any dopants, the inverted PVSCs using PPY2 as the HTM deliver an encouraging PCE up to 22.41 % with a small VOC loss (0.40 V), among the best device performances for inverted PVSCs reported so far. Furthermore, PPY2-based unencapsulated devices show an excellent long-term photostability, and over 97 % of its initial PCE can be maintained after one sun constant illumination for 500 h.

8.
J Am Chem Soc ; 142(47): 20134-20142, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33190487

RESUMO

Passivating surface and bulk defects of perovskite films has been proven to be an effective way to minimize nonradiative recombination losses in perovskite solar cells (PVSCs). The lattice interference and perturbation of atomic periodicity at the perovskite surfaces often significantly affect the material properties and device efficiencies. By tailoring the terminal groups on the perovskite surface and modifying the surface chemical environment, the defects can be reduced to enhance the photovoltaic performance and stability of derived PVSCs. Here, we report a rationally designed bifunctional molecule, piperazinium iodide (PI), containing both R2NH and R2NH2+ groups on the same six-membered ring, behaving both as an electron donor and an electron acceptor to react with different surface-terminating ends on perovskite films. The resulting perovskite films after defect passivation show released surface residual stress, suppressed nonradiative recombination loss, and more n-type characteristics for sufficient energy transfer. Consequently, charge recombination is significantly suppressed to result in a high open-circuit voltage (VOC) of 1.17 V and a reduced VOC loss of 0.33 V. A very high power conversion efficiency (PCE) of 23.37% (with 22.75% certified) could be achieved, which is the highest value reported for inverted PVSCs. Our work reveals a very effective way of using rationally designed bifunctional molecules to simultaneously enhance the device performance and stability.

9.
ACS Nano ; 13(7): 7644-7654, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31244032

RESUMO

When the geometric features of plasmonic nanostructures approach the subnanometric regime, nonlocal screening and charge spill-out of metallic electrons will strongly modify the optical responses of the structures. While quantum tunneling resulting from charge spill-out has been widely discussed in the literature, the near-field enhancement saturation caused by the nonlocal screening effect still lacks a direct experimental verification. In this work, we use surface-enhanced Raman spectroscopy (SERS) of graphene to probe the in-plane near-field enhancement limit in gold nanosphere-on-film nanocavities where different layers of graphene are sandwiched between a gold nanosphere and a gold film. Together with advanced transmission electron microscopy cross-sectional imaging and nonlocal hydrodynamic theoretical calculations, the cavity gap width correlated SERS and dark-field scattering measurements reveal that the intrinsic nonlocal dielectric response of gold limits the near-field enhancement factors and mitigates the plasmon resonance red-shift with decreasing the gap width to less than one nanometer. Our results not only verify previous theoretical predictions in both the near-field and far-field regime but also demonstrate the feasibility of controlling the near- and far-field optical response in such versatile plasmonic particle-graphene-on-film nanocavities, which can find great potential in applications of graphene-based photonic devices in the visible and near-infrared region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...